Abstract

ABSTRACTThe continuous airflow enclosures with an acid trap method was widely used to investigate ammonia (NH3) volatilization in field; however, it could be time-consuming for the estimation of NH3 volatilization in field with the application of controlled-release urea (CRU) because NH3 volatilization with CRU application could occur during the entire crop growth period. An NH3 volatilization estimation method based on the modified Jayaweera–Mikkelsen (J-M) model combined with the Sherlock–Goh model was used to simulate NH3 volatilization in a paddy field after 255 kg N ha−1 as CRU (polymer-coated urea with the concentration of 43% nitrogen, 100% for basal) and urea (70% for basal, 30% for topdressing) during the rice growth period including flooded and non-flooded periods in Wuxi, China. Results indicated that NH3 volatilization can be modeled with the proposed measure because no significant difference (P< 0.001) was observed between the simulated values and the observed values; the correlation coefficient (r2) was 0.615 for CRU and 0.840 for urea during the flooded period, and 0.991 for CRU and 0.946 for urea during the non-flooded period. Compared with urea, NH3 volatilization was minimized by 43.2% with the application of CRU based on simulated value within the rice growth period, which was 40.40 kg N ha−1 for CRU and 78.62 kg N ha−1 for urea during the flooded period, and 5.52 kg N ha−1 for CRU and 2.33 kg N ha−1 for urea during the non-flooded period. Therefore, CRU could be a promising nitrogen fertilizer to prevent NH3 losses in the rice paddies at the investigated area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call