Abstract

The current study aims to evaluate the capabilities of soil water balance modeling to estimate ET for very different conditions of rainfed grapevine water status, within a vineyard landscape that depicts heterogeneities in canopy, soil and water table conditions. We calibrated the HYDRUS-1D model against measurements of the soil moisture profile within seven contrasted sites, we validated HYDRUS-1D simulations against ET estimates derived from eddy covariance (EC) measurements within two contrasted sites, and we analyzed the temporal dynamics of the HYDRUS-1D ET simulations throughout almost two growth cycles for the seven sites. The calibration of HYDRUS-1D was correctly achieved, with a relative RMSE of 20% on average. Validation of HYDRUS-1D simulations against EC measurements was satisfactory, with RMSE values of about 40Wm−2 at the hourly timescale and 0.5mmd−1 at the daily timescale. HYDRUS-1D was able to provide consistent time series of ET within the seven contrasted sites and throughout the two growth cycles. We conclude that HYDRUS-1D simulations can be used as an alternative to EC measurements within rainfed vineyards, to alleviate experimental efforts for device cost and maintenance. Further, HYDRUS-1D simulations can be used for characterizing spatial variabilities and temporal dynamics, assessing impact of pedological conditions and land use on ET, or validating remote sensing retrievals over regional extents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.