Abstract

During the launch of space vehicles, there is a large external excitation generated by acoustic and structural vibration. This is due to acoustic pressure fluctuations on the vehicle fairing caused by the engine exhaust gases. This external excitation drives the fairing structure and produces large acoustic pressure fluctuations inside the fairing cavity. The acoustic pressure fluctuations not only produce high noise levels inside the cavity but also cause damage such as structural fatigue, and damage to, or destruction of, the payload inside the fairing. This is an important problem because one trend of the aerospace industry is to use composite materials for the construction of launch vehicle fairings, resulted in large-scale weight reductions of launch vehicles, but increased the noise transmission inside the fairing. This work investigates the nature of the external acoustic pressure distribution on a representative small launch vehicle fairing during liftoff. The acoustic pressure acting on a representative small launch vehicle fairing was estimated from the complex acoustic field generated by the rocket exhaust during liftoff using a non-unique source allocation technique which considered acoustic sources along the rocket engine exhaust flow. Numerical and analytical results for the acoustic loads on the fairing agree well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.