Abstract

177 Lu-PSMA-617-radioligand therapy (RLT) has shown promising therapeutic role in patients with metastatic castration-resistant prostate cancer. However, off-target action in salivary glands often presents with xerostomia. Personalized dosimetry can help in optimizing the treatment, however, has so far been tedious due to multiple time-point imaging. In this prospective study, we intended to estimate the absorbed dose delivered to the salivary glands in patients undergoing 177 Lu-PSMA-617-RLT using quantitative SPECT/CT at a single time point. Patients undergoing 177 Lu-PSMA-617 RLT were included in this prospective study. Post-therapy whole-body images and regional quantitative single time-point SPECT/CT were acquired at 24 h with high-energy collimator. The data was processed and analyzed using Q.Metrix software. A scaling factor, that is, the time-integrated activity conversion factor was applied for the image acquired at 24 h. Absorbed doses were computed using MIRD scheme and OLINDA software. A total of 21 patients (mean age: 66 ± 9 years) were included. The value of mean absorbed dose for the parotid glands was 1.90 ± 1.31Gy (range: 0.26-6.23) and that for the submandibular glands was 1.37 ± 0.94Gy (range: 0.16-3.65). The mean absorbed doses per administered activity for the parotid and submandibular glands were 0.26 ± 0.18 Gy/GBq and 0.19 ± 0.12 Gy/GBq, respectively. The absorbed doses were estimated for one cycle of therapy and were well within acceptable limits. None of the patients experienced dryness of mouth. Single time-point dosimetry with quantitative SPECT/CT is feasible and can be standardized to estimate the absorbed dose to salivary glands instead of multiple time-point acquisitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.