Abstract

Zero-inflated Poisson (ZIP) regression is widely applied to model effects of covariates on an outcome count with excess zeros. In some applications, covariates in a ZIP regression model are partially observed. Based on the imputed data generated by applying the multiple imputation (MI) schemes developed by Wang and Chen (Ann Stat 37:490–517, 2009), two methods are proposed to estimate the parameters of a ZIP regression model with covariates missing at random. One, proposed by Rubin (in: Proceedings of the survey research methods section of the American Statistical Association, 1978), consists of obtaining a unified estimate as the average of estimates from all imputed datasets. The other, proposed by Fay (J Am Stat Assoc 91:490–498, 1996), consists of averaging the estimating scores from all imputed data sets to solve the imputed estimating equation. Moreover, it is shown that the two proposed estimation methods are asymptotically equivalent to the semiparametric inverse probability weighting method. A modified formula is proposed to estimate the variances of the MI estimators. An extensive simulation study is conducted to investigate the performance of the estimation methods. The practicality of the methodology is illustrated with a dataset of motorcycle survey of traffic regulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.