Abstract

SUMMARY We consider estimating a sparse group of sparse normal mean vectors, based on penalized likelihood estimation with complexity penalties on the number of nonzero mean vectors and the numbers of their significant components, which can be performed by a fast algorithm. The resulting estimators are developed within a Bayesian framework and can be viewed as maximum a posteriori estimators. We establish their adaptive minimaxity over a wide range of sparse and dense settings. A simulation study demonstrates the efficiency of the proposed approach, which successfully competes with the sparse group lasso estimator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.