Abstract

Quantum light is described not only by a quantum state but also by the shape of the electromagnetic modes on which the state is defined. Optical precision measurements often estimate a “mode parameter” that determines properties such as frequency, temporal shape, and the spatial distribution of the light field. By deriving quantum precision limits, we establish the fundamental bounds for mode parameter estimation. Our results reveal explicit mode-design recipes that enable the estimation of any mode parameter with quantum enhanced precision. Our approach provides practical methods for optimizing mode parameter estimation with relevant applications, including spatial and temporal positioning, spectroscopy, phase estimation, and superresolution imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.