Abstract

This paper investigates identification and estimation of a class of nonlinear panel data, single-index models. The model allows for unknown time-specific link functions, and semiparametric specification of the individual-specific effects. We develop an estimator for the parameters of interest, and propose a powerful new kernel-based modified backfitting algorithm to compute the estimator. We derive uniform rates of convergence results for the estimators of the link functions, and show the estimators of the finite-dimensional parameters are root-N consistent with a Gaussian limiting distribution. We study the small sample properties of the estimator via Monte Carlo techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.