Abstract
The purpose of research was to study the existing methods of determining the degree of cohesion of two users of social network, identifying their shortcomings and developing a new method. The research identified shortcomings of existing methods and proposed a new method for assessing the degree of cohesion of social network profiles based on open data from a social network. Under the degree of cohesion of users’ profiles is understood the probability of communication (interaction) of profile owners in real life, it is calculated for two users of the social network and expressed in percent. The work of the method is demonstrated on the example of the social network “In contact”. This method includes the sequence of the following stages: the first stage is data collection about users of the social network with API and the formation of tuples of users’ profile characteristics. A tuple of characteristics of social network profiles is the data, collected for each user, stored in a structured form. The next step is the analysis of the collected information. For each characteristic of the tuple of profiles, i.e. the possible element of interaction of users in the social network, the coefficient of cohesion by the characteristic is calculated. In addition, for each feature, its informativeness is calculated, i.e. how important is this or that feature in this social network. At the final stage, the results are generated, using the formula for the probability of communication between two users, derived during the investigation. Obtained as a result of the application of the method, the probability of communication between two users can be used to optimize the activities of the operative-search services and special bodies. In addition, the received degree of cohesion of two users can be interpreted as the probability of a channel of information leakage between them. The role of the user of the method can be any private or state organization that cares about the security of corporate data and commercial secrets, the operative-search service, as well as an organization that investigates cybercrimes and information security incidents.
Highlights
Estimation method of the cohesion degree for the users’ profiles of social network based on open data
The research identified shortcomings of existing methods and proposed a new method for assessing the degree of cohesion of social network profiles based on open data from a social network
The work of the method is demonstrated on the example of the social network “In contact”
Summary
Целью исследования являлось изучение существующих методов определения степени связанности двух пользователей социальной сети, определение их недостатков и разработка нового метода. Также полученная степень связанности двух пользователей может интерпретироваться как вероятность возникновения канала утечки информации между ними. В связи с этим целью исследования является изучение существующих методов оценки связанности пользователей социальной сети, определение их недостатков и разработка критериев для создания нового метода. В связи с этим, встает вопрос о создании нового метода, который мог бы быстро и удобно предоставлять информацию о степени связанности профилей пользователей без явного «указания дружбы» в различных социальных сетей, но учитывать другие количественные или качественные показатели взаимодействия пользователей, что и является главной целью исследования. Практической значимостью разработки данного метода является оптимизации и автоматизации деятельности оперативно-розыскных служб и других органов, а также оценка вероятности образования канала утечки конфиденциальной информации (например, корпоративных данных) любой организации через социальные сети
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.