Abstract

In this article, we utilize a scale mixture of Gaussian random field as a tool for modeling spatial ordered categorical data with non-Gaussian latent variables. In fact, we assume a categorical random field is created by truncating a Gaussian Log-Gaussian latent variable model to accommodate heavy tails. Since the traditional likelihood approach for the considered model involves high-dimensional integrations which are computationally intensive, the maximum likelihood estimates are obtained using a stochastic approximation expectation–maximization algorithm. For this purpose, Markov chain Monte Carlo methods are employed to draw from the posterior distribution of latent variables. A numerical example illustrates the methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.