Abstract
Abstract In this paper, we study linear regression models in which the error term has shape mixtures of skew-normal distribution. This type of distribution belongs to the skew-normal (SN) distribution class that can be used for heavy tails and asymmetry data. For the first time, for the classical (non-Bayesian) estimation of the parameters of the SN family, we apply the Markov chains Monte Carlo ECM (MCMC-ECM) algorithm where the samples are generated by Gibbs sampling, denoted by Gibbs-ECM, and also, we extend two other types of the EM algorithm for the above model. Finally, the proposed method is evaluated through a simulation and compared with the Numerical Math-ECM algorithm and Monte Carlo ECM (MC-ECM) using a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.