Abstract
Soil thermal parameters are important for calculating the surface energy balance and mass transfer. Previous studies have proposed methods to estimate thermal parameters using field data; however, the application of these methods lacks validation and comprehensive evaluation under different climatic conditions. Here, we evaluate four methods (amplitude, phase shift, conduction–convection and harmonic) to estimate thermal diffusivity (k) under different climatic conditions. Heat flux was simulated and compared with data from heat-flux plates to validate the application of the four methods. The results indicated that, under clear-sky conditions, the harmonic method had the greatest accuracy in estimating k, though it generated large errors on rainy days or under overcast conditions. The conduction–convection method (CCM) provided a reliable estimate of k on rainy days, or under overcast skies, coinciding with increased water movement in the soil profile. The amplitude method, although a simple calculation, had poor accuracy for rainy and overcast conditions. Finally, the phase shift method was shown to be a suitable alternative for CCM to estimate k under overcast conditions, though only when soil moisture content was high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.