Abstract

Subtractive dither is a powerful method for removing the signal dependence of quantization noise for coarsely-quantized signals. However, estimation from dithered measurements often naively applies the sample mean or midrange, even when the total noise is not well described with a Gaussian or uniform distribution. We show that the generalized Gaussian distribution approximately describes subtractively-dithered, quantized samples of a Gaussian signal. Furthermore, a generalized Gaussian fit leads to simple estimators based on order statistics that match the performance of more complicated maximum likelihood estimators requiring iterative solvers. The order statistics-based estimators outperform both the sample mean and midrange for nontrivial sums of Gaussian and uniform noise. Additional analysis of the generalized Gaussian approximation yields rules of thumb for determining when and how to apply dither to quantized measurements. Specifically, we find subtractive dither to be beneficial when the ratio between the Gaussian standard deviation and quantization interval length is roughly less than 1/3. If that ratio is also greater than 0.822/$K^{0.930}$ for the number of measurements $K>20$, we present estimators more efficient than the midrange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.