Abstract

Time-varying coefficient regression is commonly used in the modeling of nonstationary stochastic processes. In this paper, we consider a time-varying coefficient convolution-type smoothed quantile regression (conquer). The covariates and errors are assumed to belong to a general class of locally stationary processes. We propose a local linear conquer estimator for the varying-coefficient function, and obtain the global Bahadur–Kiefer representation, which yields the asymptotic normality. Furthermore, statistical inference on simultaneous confidence bands is also studied. We investigate the finite-sample performance of the conquer estimator and confirm the validity of our asymptotic theory by conducting extensive simulation studies. We also consider financial volatility data as an example of a real-world application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.