Abstract
We consider processes of the form X(t) = X<sup>~</sup>(θ(<i>t</i>)) where X<sup>~</sup> is a self-similar process with stationary increments and θ is a deterministic subordinator with a periodic activity function <i>a</i> = θ'> 0. Such processes have been proposed as models for high-frequency financial data, such as currency exchange rates, where there are known to be daily and weekly periodic fluctuations in the volatility, captured here by the periodic activity function. We review an existing estimator for the activity function then propose three new methods for estimating it and present some experimental studies of their performance. We finish with an application to some foreign exchange and FTSE100 futures data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.