Abstract
We consider the estimation of arrival and service rates for queues based on queue length data collected at successive, not necessarily equally spaced, time points. In particular, we consider the M/M/c queue, for c large, but application of the method to the repairman problem is almost identical, and the general approach presented should extend to other queue types. The estimation procedure makes use of an Ornstein-Uhlenbeck diffusion approximation to the Markov process description of the queue. We demonstrate the approach through simulation studies and discuss situations in which the approximation works best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.