Abstract

This paper proposes a new local linearization method which approximates a nonlinear stochastic differential equation by a linear stochastic differential equation. Using this method, we can estimate parameters of the nonlinear stochastic differential equation from discrete observations by the maximum likelihood technique. We conduct the numerical experiments to evaluate the finite sample performance of identification of the new method, and compare it with the two known methods: the original local linearization method and the Euler methods. From the results of experiments, the new method shows much better performance than the other two methods particularly when the sampling interval is large

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.