Abstract
A novel method for estimating the shape factor of a generalized Gaussian probability density function (PDF) is presented and assessed. It relies on matching the entropy of the modeled distribution with that of the empirical data. The entropic approach is suitable for real-time applications and yields results that are accurate also for low values of the shape factor and small data sample. Modeling of wavelet coefficients for entropy coding is addressed and experimental results on true image data are reported and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.