Abstract

Call admission control (CAC) has been accepted as a potential solution for supporting a variety of traffic sources demanding different quality of service guarantees in asynchronous transfer mode networks. Basically, CAC is required to consume a minimum of time and space to make call acceptance decisions. In the paper a CAC algorithm is presented based on a novel estimation method, called quasilinear dual-class correlation (QLDC). All heterogeneous traffic calls are initially categorised into various classes. According to the number of calls in each traffic class, QLDC conservatively and precisely estimates the cell delay and cell loss ratio for each traffic class via simple vector multiplication. These vectors are computed in advance from the results of three dual arrival queuing models, M[N1] + I[N2]/D/1/K, M1[N1] + M2[N2]/D/1/K and I1[N1] + I2[N2]/D/1/K, where M and I represent the Bernoulli process and the interrupted Bernoulli process, respectively. Consequently, the authors' QLDC-based CAC, as will be shown, yields low time complexity O(C) (in vector multiplications) and space complexity O(WC2) (in bytes), where C is the total number of traffic classes and W is the total number of aggregate load levels. Numerical examples are also employed to justify that QLDC-based estimated results profoundly agree with simulation results in both the single-node and end-to-end cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.