Abstract

The aim of this paper is to assess the significant impact of using quantile analysis in multiple fields of scientific research . Here, we focus on estimating conditional quantile functions when the errors follow a GARMA (Generalized Auto-Regressive Moving Average) model. Our key theoretical contribution involves identifying the Quantile-Regression (QR) coefficients within the context of GARMA errors. We propose a modified maximum-likelihood estimation method using an EM algorithm to estimate the target coefficients and derive their statistical properties. The proposed procedure yields estimators that are strongly consistent and asymptotically normal under mild conditions. In order to evaluate the performance of the proposed estimators, a simulation study is conducted employing the minimum bias and Root Mean Square Error (RMSE) criterion. Furthermore, an empirical application is given to demonstrate the effectiveness of the proposed methodology in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.