Abstract

Estimation and tracking of fundamental, 2nd and 3d harmonic frequencies for spectrogram normalization in speech recognitionA stable and accurate estimation of the fundamental frequency (pitch,F0) is an important requirement in speech and music signal analysis, in tasks like automatic speech recognition and extraction of target signal in noisy environment. In this paper, we propose a pitch-related spectrogram normalization scheme to improve the speaker - independency of standard speech features. A very accurate estimation of the fundamental frequency is a must. Hence, we develop a non-parametric recursive estimation method ofF0 and its 2nd and 3d harmonic frequencies in noisy circumstances. The proposed method is different from typical Kalman and particle filter methods in the way that no particular sum of sinusoidal model is used. Also we tend to estimate F0 and its lower harmonics by using novel likelihood function. Through experiments under various noise levels, the proposed method is proved to be more accurate than other conventional methods. The spectrogram normalization scheme makes a mapping of real harmonic structure to a normalized structure. Results obtained for voiced phonemes show an increase in stability of the standard speech features - the average within-phoneme distance of the MFCC features for voiced phonemes can be decreased by several percent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.