Abstract
We develop a mixture model and diagnostic for Bayesian estimation and selection in high-order, discrete-state Markov chains. Both extend the mixture transition distribution, which constructs a transition probability tensor by aggregating probabilities from a set of single-lag transition matrices, through inclusion of mixture components dependent on multiple lags. We demonstrate two uses for the proposed model: identification of relevant lags through over-specification and shrinkage via priors for sparse probability vectors, and parsimonious approximation of multi-lag dynamics by mixing low-order transition models. The diagnostic yields a general and interpretable mixture decomposition for transition probability tensors estimated by any means. We demonstrate the utility of the model and diagnostic with simulation studies, and further apply the methodology to a data analysis from the high-order Markov chain literature, and to a time series of pink salmon abundance in Alaska, United States. Supplemental files for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.