Abstract
ABSTRACTThe maximum likelihood and Bayesian approaches for estimating the parameters and the prediction of future record values for the Kumaraswamy distribution has been considered when the lower record values along with the number of observations following the record values (inter-record-times) have been observed. The Bayes estimates are obtained based on a joint bivariate prior for the shape parameters. In this case, Bayes estimates of the parameters have been developed by using Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method due to the lack of explicit forms under the squared error and the linear-exponential loss functions. The MCMC method has been also used to construct the highest posterior density credible intervals. The Bayes and the maximum likelihood estimates are compared by using the estimated risk through Monte Carlo simulations. We further consider the non-Bayesian and Bayesian prediction for future lower record values arising from the Kumaraswamy distribution based on record values with their corresponding inter-record times and only record values. The comparison of the derived predictors are carried out by using Monte Carlo simulations. Real data are analysed for an illustration of the findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.