Abstract
ABSTRACTIn this paper, we consider Marshall–Olkin extended exponential (MOEE) distribution which is capable of modelling various shapes of failure rates and aging criteria. The purpose of this paper is three fold. First, we derive the maximum likelihood estimators of the unknown parameters and the observed the Fisher information matrix from progressively type-II censored data. Next, the Bayes estimates are evaluated by applying Lindley’s approximation method and Markov Chain Monte Carlo method under the squared error loss function. We have performed a simulation study in order to compare the proposed Bayes estimators with the maximum likelihood estimators. We also compute 95% asymptotic confidence interval and symmetric credible interval along with the coverage probability. Third, we consider one-sample and two-sample prediction problems based on the observed sample and provide appropriate predictive intervals under classical as well as Bayesian framework. Finally, we analyse a real data set to illustrate the results derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.