Abstract
ABSTRACTIn this paper, the estimation of parameters for a generalized inverted exponential distribution based on the progressively first-failure type-II right-censored sample is studied. An expectation–maximization (EM) algorithm is developed to obtain maximum likelihood estimates of unknown parameters as well as reliability and hazard functions. Using the missing value principle, the Fisher information matrix has been obtained for constructing asymptotic confidence intervals. An exact interval and an exact confidence region for the parameters are also constructed. Bayesian procedures based on Markov Chain Monte Carlo methods have been developed to approximate the posterior distribution of the parameters of interest and in addition to deduce the corresponding credible intervals. The performances of the maximum likelihood and Bayes estimators are compared in terms of their mean-squared errors through the simulation study. Furthermore, Bayes two-sample point and interval predictors are obtained when the future sample is ordinary order statistics. The squared error, linear-exponential and general entropy loss functions have been considered for obtaining the Bayes estimators and predictors. To illustrate the discussed procedures, a set of real data is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.