Abstract
The fluctuating wind power spectrum (FWPS) in given specifications could only represent the second‐order probabilistic characteristic, which indicates that it is not capable of fully expressing the stochastic wind field. Estimation and modeling of the fluctuating wind amplitude spectrum (FWAS) as well as the fluctuating wind phase spectrum (FWPhS) by using measured wind velocity data can make up for the deficiencies mentioned above. A high‐resolution nonparametric spectral estimation algorithm—amplitude and phase estimation (APES)—is used to estimate the FWAS and the FWPhS, using the field measured wind velocity data of a certain cable‐stayed bridge in Shanghai, China. An empirical expression (eFWAS) is introduced by dimensional analysis to model the random FWAS, and its specific Davenport form is proposed according to field measured data. The parameters of the Davenport eFWAS model are estimated by using the above measured FWAS, and three specific applications of this model are put forward when different known conditions are met. Compared with the measured FWAS, the stochastic Davenport eFWAS model proposed in this paper can accurately describe the statistical properties of the local wind field and improve the modeling accuracy of the FWAS, which is important in antiwind structural design and safety assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.