Abstract

The basic reproductive ratio, R 0, is a central quantity in the investigation and management of infectious pathogens. The standard model for describing stochastic epidemics is the continuous time epidemic birth-and-death process. The incidence data used to fit this model tend to be collected in discrete units (days, weeks, etc.), which makes model fitting, and estimation of R 0 difficult. Discrete time epidemic models better match the time scale of data collection but make simplistic assumptions about the stochastic epidemic process. By investigating the nature of the assumptions of a discrete time epidemic model, we derive a bias corrected maximum likelihood estimate of R 0 based on the chain binomial model. The resulting ‘removal’ estimators provide estimates of R 0 and the initial susceptible population size from time series of infectious case counts. We illustrate the performance of the estimators on both simulated data and real epidemics. Lastly, we discuss methods to address data collected with observation error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.