Abstract
Many papers have regressed non-parametric estimates of productive efficiency on environmental variables in two-stage procedures to account for exogenous factors that might affect firms’ performance. None of these have described a coherent data-generating process (DGP). Moreover, conventional approaches to inference employed in these papers are invalid due to complicated, unknown serial correlation among the estimated efficiencies. We first describe a sensible DGP for such models. We propose single and double bootstrap procedures; both permit valid inference, and the double bootstrap procedure improves statistical efficiency in the second-stage regression. We examine the statistical performance of our estimators using Monte Carlo experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.