Abstract

A low frequency factor model regression uses changes or returns computed at a lower frequency than data available. Using overlapping observations to estimate low frequency factor model regressions results in more efficient estimates of OLS coefficients and standard errors, relative to using independent observations or high frequency estimates. I derive the relevant inference and propose a new method to correct for the induced autocorrelation. I present a series of simulations and empirical examples to support the theoretical results. In tests of asset pricing models, using overlapping observations results in lower pricing errors, compared to existing alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.