Abstract
This paper presents a new approach to estimation and inference in panel data models with unobserved common factors possibly correlated with exogenously given individual-specific regressors and/or the observed common effects. The basic idea behind the proposed estimation procedure is to filter the individual-specific regressors by means of (weighted) cross-section aggregates such that asymptotically as the cross-section dimension (N) tends to infinity the differential effects of unobserved commond factors are eliminated. The estimation procedure has the advantage that it can be computed by OLS applied to an auxiliary regression where the observed regressors are augmented by cross sectional averages of the dependent variable and the individual specific regressors. It is shown that the proposed correlated common effects (CCE) estimators for the individual-specific regressors (and its pooled counterpart) are asymptotically unbiased as N approaches infinity, both when T (the time-series dimension) is fixed, and when N and T tend to infinity jointly. A generalization of these results to multi-factor structures is also provided. The estimation and inference in dynamic heterogenous panels with a residual factor structure will be addressed in a companion paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.