Abstract

We consider the estimation of and inference on precision matrices of a rich class of univariate locally stationary linear and nonlinear time series, assuming that only one realization of the time series is observed. Using a Cholesky decomposition technique, we show that the precision matrices can be directly estimated via a series of least squares linear regressions with smoothly time-varying coefficients. The method of sieves is utilized for the estimation and is shown to be optimally adaptive in terms of estimation accuracy and efficient in terms of computational complexity. We establish an asymptotic theory for a class of $\mathcal{L}^{2}$ tests based on the nonparametric sieve estimators. The latter are used for testing whether the precision matrices are diagonal or banded. A Gaussian approximation result is established for a wide class of quadratic forms of nonstationary and possibly nonlinear processes of diverging dimensions which is of interest by itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.