Abstract
This article proposes a new Multi-Kink Quantile Regression (MKQR) model which assumes different linear quantile regression forms in different regions of the domain of the threshold covariate but are still continuous at kink points. First, we investigate parameter estimation, kink points detection and statistical inference in MKQR models. We propose an iterative segmented quantile regression algorithm for estimating both the regression coefficients and the locations of kink points. The proposed algorithm is much more computationally efficient than the grid search algorithm and not sensitive to the selection of initial values. Second, asymptotic properties, such as selection consistency of the number of kink points and asymptotic normality of the estimators of both regression coefficients and kink effects, are established to justify the proposed method theoretically. Third, a score test based on partial subgradients is developed to verify whether the kink effects exist or not. Test-inversion confidence intervals for kink location parameters are also constructed. Monte Carlo simulations and two real data applications on the secondary industrial structure of China and the triceps skinfold thickness of Gambian females illustrate the excellent finite sample performances of the proposed MKQR model. A new R package MultiKink is developed to easily implement the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Business & Economic Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.