Abstract
In this paper, we are concerned with the estimation and identification of time-varying wireless long-term fading channels. The dynamics of the fading channels are captured using a mean-reverting linear stochastic differential equation driven by a Brownian motion. Recursive estimation and identification algorithms solely from received signal strength data are developed. These algorithms are based on combining the particle filter (PF) with the expectation maximization (EM) algorithm that estimate and identify the power path-loss of the channel and its parameters, respectively. Numerical results are provided to evaluate the accuracy of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.