Abstract

Abstract Stochastic Volatility (SV) models are an alternative to GARCH models for estimating volatility and several empirical studies have indicated that volatility exhibits long-memory behavior. The main objective of this work is to propose a new method to estimate a univariate long-memory stochastic volatility (LMSV) model. For this purpose we formulate the LMSV model in a state-space representation with non-Gaussian perturbations in the observation equation, and the estimation of parameters is performed by maximizing the likelihood written in terms derived from a Kalman filter algorithm. We also present a procedure to calculate volatility and Value-at-Risks forecasts. The proposal is evaluated by means of Monte Carlo experiments and applied to real-life time series, where an illustration of market risk calculation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.