Abstract

This paper addresses the issues of maximum likelihood estimation and forecasting of a long-memory time series with missing values. A state-space representation of the underlying long-memory process is proposed. By incorporating this representation with the Kalman filter, the proposed method allows not only for an efficient estimation of an ARFIMA model but also for the estimation of future values under the presence of missing data. This procedure is illustrated through an analysis of a foreign exchange data set. An investment scheme is developed which demonstrates the usefulness of the proposed approach. © 1997 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.