Abstract

A GPS/Acoustic experiment on the southeastern slope of Hawaii Island presented precise seafloor positioning in the condition of large water depth (2.5—4.5 km) and large velocity variations. We estimated sound velocity variations from acoustic ranging, and found that temperature variation can well explain the velocity variation. The effect of daily variation in the sound velocity amounted to +/- 0.7 m on acoustic ranging of 4—7 km with a fixed velocity structure. CTD data observed about every 3 hours could decrease the range residuals to +/- 0.4 m. These large residuals were fairly well canceled in the positioning of the array center of three acoustic transponders. The estimated precision of the array center positioning was about 3 cm in latitude and longitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.