Abstract
The nonlinear filtering problem of estimating the state of a linear stochastic system from noisy observations is solved for a broad class of probability distributions of the initial state. It is shown that the conditional density of the present state, given the past observations, is a mixture of Gaussian distributions, and is parametrically determined by two sets of sufficient statistics which satisfy stochastic DEs; this result leads to a generalization of the Kalman–Bucy filter to a structure with a conditional mean vector, and additional sufficient statistics that obey nonlinear equations, and determine a generalized (random) Kalman gain. The theory is used to solve explicitly a control problem with quadratic running and terminal costs, and bounded controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.