Abstract
This paper develops a framework for performing estimation and inference in econometric models with partial identification, focusing particularly on models characterized by moment inequalities and equalities. Applications of this framework include the analysis of game-theoretic models, revealed preference restrictions, regressions with missing and corrupted data, auction models, structural quantile regressions, and asset pricing models. Specifically, we provide estimators and confidence regions for the set of minimizers Θ I of an econometric criterion function Q(θ). In applications, the criterion function embodies testable restrictions on economic models. A parameter value θ that describes an economic model satisfies these restrictions if Q(θ) attains its minimum at this value. Interest therefore focuses on the set of minimizers, called the identified set. We use the inversion of the sample analog, Q n (θ), of the population criterion, Q(θ), to construct estimators and confidence regions for the identified set, and develop consistency, rates of convergence, and inference results for these estimators and regions. To derive these results, we develop methods for analyzing the asymptotic properties of sample criterion functions under set identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.