Abstract

Spatial and temporal variation in the free electron concentration in the ionosphere affects SAR interferograms, in particular at low radar frequencies. In this work, the identification, estimation, and compensation of ionospheric path delay phases in PALSAR-3 and NISAR-L interferograms are discussed. Both of these L-band sensors simultaneously acquire SAR data in a main spectral band and in an additional, spectrally separated, narrower second band to support the mitigation of ionospheric path delays. The methods presented permit separating the dispersive and the non-dispersive phase terms based on the double-difference interferogram between the two available spectral bands and the differential interferogram of the main band. The applicability of the proposed methods is demonstrated using PALSAR-3-like data that were simulated based on PALSAR-2 SM1 mode data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.