Abstract

Abstract This paper makes two contributions to the area of motion-compensated processing of image sequences. First contribution is the development of a framework for the modeling and estimation of dense 2-D motion trajectories with acceleration. Therefore, Gibbs-Markov models are proposed and linked together by the maximum a posteriori probability (MAP) criterion, and the resulting objective function is minimized using multiresolution deterministic relaxation. Accuracy of the method is demonstrated by measuring the mean-squared error of estimated motion parameters for images with synthetic motion. Second contribution is the demonstration of a significant gain resulting from the use of trajectories with acceleration in motion-compensated temporal interpolation of videoconferencing/videophone images. An even higher gain is demonstrated when the accelerated motion trajectory model is augmented with occlusion and motion discontinuity models. The very good performance of the method suggests a potential application of the proposed framework in the next generation of video coding algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.