Abstract
<p>The Kappa distribution is a versatile distribution and results in nine different distributions depending on its parameter values.The study presents an entropy-based method for estimating the parameters of the four parameters kappa distribution. At site data of the annual maximum flood of 30 sites of Krishna river basins are used for the study. The parameters estimated using the principle of maximum entropy (POME), method of moments, L-moments, and method of maximum likelihood is compared using Kolmogorov-Smirnov (K-S) test. The overall performance of the methods POME, MLE and L-moment are found to be comparable, whereas MOM performs with the highest bias; both the entropy method and the L-moment method allows the four-parameter kappa distribution to fit the data well and the combination of the two methods can further improve the parameter estimation of the four-parameter kappa distribution.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.