Abstract

We verified the feasibility of an alternative solution to generate temperature and pressure profiles with the U.S. standard atmosphere model (USSA-76). We simultaneously integrated this model with conventional meteorological parameters measured by a weather station in the course of estimating the refractive index structure constant (C n2). Moreover, a continuous-time-series estimation method of the refractive index structure constant was established within the marine atmospheric boundary layer (ABL) based on wind data obtained from a coherent Doppler wind lidar (CDWL). We also analyzed the optical turbulence characteristics induced by wind shear during the conducted experiment. Laminated and patchy stratified turbulences, which affect the performance of imaging and light transmission systems, were found within the marine ABL. Additionally, the relationship between the ABL and all atmospheric optical turbulence factors shows that the ratio of marine ABL in the entire layer differs from that reported in previous studies. Moreover, the influence of thermal turbulence factors within the marine ABL was less than that of the entire layer in our case. We report a real-time C n2 estimation method based on a CDWL. The characteristics of the marine ABL C n2 constitute a reference for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call