Abstract

The Markov property is shared by several popular models for time series such as autoregressive or integer-valued autoregressive processes as well as integer-valued ARCH processes. A natural assumption which is fulfilled by corresponding parametric versions of these models is that the random variable at time t gets stochastically greater conditioned on the past, as the value of the random variable at time t-1 increases. Then the associated family of conditional distribution functions has a certain monotonicity property which allows us to employ a nonparametric antitonic estimator. This estimator does not involve any tuning parameter which controls the degree of smoothing and is therefore easy to apply. Nevertheless, it is shown that it attains a rate of convergence which is known to be optimal in similar cases. This estimator forms the basis for a new method of bootstrapping Markov chains which inherits the properties of simplicity and consistency from the underlying estimator of the conditional distribution function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.