Abstract

This article studies the probabilistic structure and asymptotic inference of the first-order periodic generalized autoregressive conditional heteroscedasticity (PGARCH(1, 1)) models in which the parameters in volatility process are allowed to switch between different regimes. First, we establish necessary and sufficient conditions for a PGARCH(1, 1) process to have a unique stationary solution (in periodic sense) and for the existence of moments of any order. Second, using the representation of squared PGARCH(1, 1) model as a PARMA(1, 1) model, we then consider Yule-Walker type estimators for the parameters in PGARCH(1, 1) model and derives their consistency and asymptotic normality. The estimator can be surprisingly efficient for quite small numbers of autocorrelations and, in some cases can be more efficient than the least squares estimate (LSE). We use a residual bootstrap to define bootstrap estimators for the Yule-Walker estimates and prove the consistency of this bootstrap method. A set of numerical experiments illustrates the practical relevance of our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.