Abstract
This article studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. A modified QMLE (MQMLE) is also studied. This estimator is based on truncation of individual terms of the likelihood function and is related to the recent so-called self-weighted QMLE in Ling (2007b). We show that the MQMLE is asymptotically normal irrespectively of the existence of finite moments, as geometric ergodicity alone suffice. Moreover, our included simulations show that the MQMLE is remarkably well-behaved in small samples. On the other hand, the ordinary QMLE, as is well-known, requires finite fourth order moments for asymptotic normality. But based on our considerations and simulations, we conjecture that in fact only geometric ergodicity and finite second order moments are needed for the QMLE to be asymptotically normal. Finally, geometric ergodicity for AR-ARCH processes is shown to hold under mild and classic conditions on the AR and ARCH processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.