Abstract

Space charge measurement accuracy is crucial when assessing the suitability of cables for high-voltage direct current (DC) systems. This study assembled state-of-the-art analysis technologies, including time-domain deconvolution, to mark electric field estimation accuracy, which the present techniques achieve. The pulse electroacoustic method was applied to a 66 kV-class extruded cable, and waveforms were obtained and analyzed to reproduce the electric field distribution. The DC voltage was set to be sufficiently low so that the analysis results can be compared with Laplace’s equation. The statistical analysis of 81 waveforms under a DC voltage of 30 kV showed that the estimation accuracy was −0.3% ± 19.9% with a 95.4% confidence interval, even with the deconvolution parameter optimized. The estimated accuracy using the “reference” waveform is applied to waveforms at higher voltages since similar estimation accuracies were confirmed for waveforms obtained under a DC voltage of 45 kV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call