Abstract

This four-year research determined the best predictors of black, brown and yellow rusts and powdery mildew development in different wheat cultivars and planting dates across 282 experimental field plots. Parameters estimated by exponential (for black rust and powdery mildew) and Gaussian (for brown and yellow rusts) models, area under disease progress curve (AUDPC), and maximum disease severity were considered as disease progress curve elements. Factor analysis determined the most predictive variables among 19 indicators in order to describe wheat yield. According to principal component analysis (PCA), 11 selected wheat diseases and yield predicators accounted for 60% of total variance in datasets. This PCA test described four principal components involving these selected predictors. Next, multivariate regression model, which developed according to four independent principal components, justified a noticeable part of yield variability over and within growing seasons. Present findings may improve accuracy of future studies to examine seasonal patterns of powdery mildew and rusts, predict wheat yield and develop integrative disease management programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.