Abstract
This article deals with the topical problem of estimating water content in water–oil mixtures within porous media they saturate, according to low-field NMR relaxometry and dielectric spectroscopy. The aim of the research is experimental validation of the capability of complex data interpretation to acquire information on the filtration-volumetric properties of drill cuttings, relaxation characteristics of oil-containing fluids, the water/oil ratio in water–oil mixtures, and their saturation of drill cuttings to control the composition of liquids produced from boreholes. The studies are carried out on samples of cuttings and oils taken from fields in the Northern regions of the West Siberian oil-and-gas province, where NMR studies have not been performed before. Based on the experimental data obtained, the possibility of water content assessment in water-in-oil mixtures and porous media they saturate were proved through NMR relaxometry. With the use of the proposed methodology, the amount of water in oil–water mixtures was established, and their main NMR characteristics were determined. The relative error in evaluating the proportion of water in mixtures based on high-viscosity oils is less than 10%, and about 20% for those based on light oils. When determining the oil–water ratio in the pore space of the drill cuttings, the error is about 15%. It was proven that joint use of these two techniques makes it possible to increase the reliability of the oil–water ratio assessment of all the samples studied. Furthermore, it was revealed that the NMR spectrum shifts to the right, and the spectrum of the complex permittivity shifts downwards during the transition from high-viscosity oils to light ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.