Abstract

To construct an optical coherence tomography (OCT) nerve fiber layer (NFL) parameter that has maximal correlation and agreement with visual field (VF) mean deviation (MD). The NFL_MD parameter in dB scale was calculated from the peripapillary NFL thickness profile nonlinear transformation and VF area-weighted averaging. From the Advanced Imaging for Glaucoma study, 245 normal, 420 pre-perimetric glaucoma (PPG), and 289 perimetric glaucoma (PG) eyes were selected. NFL_MD had significantly higher correlation (Pearson R: 0.68 vs 0.55, p < 0.001) with VF_MD than the overall NFL thickness. NFL_MD also had significantly higher sensitivity in detecting PPG (0.14 vs 0.08) and PG (0.60 vs 0.43) at the 99% specificity level. NFL_MD had better reproducibility than VF_MD (0.35 vs 0.69 dB, p < 0.001). The differences between NFL_MD and VF_MD were −0.34 ± 1.71 dB, −0.01 ± 2.08 dB and 3.54 ± 3.18 dB and 7.17 ± 2.68 dB for PPG, early PG, moderate PG, and severe PG subgroups, respectively. In summary, OCT-based NFL_MD has better correlation with VF_MD and greater diagnostic sensitivity than the average NFL thickness. It has better reproducibility than VF_MD, which may be advantageous in detecting progression. It agrees well with VF_MD in early glaucoma but underestimates damage in moderate~advanced stages.

Highlights

  • In this study, we hypothesized that reducing the differences in scaling and weighting could improve the correlation between visual field (VF) and optical coherence tomography (OCT) measurements

  • We developed a method to estimate the visual field mean deviation (VF_MD) using the circumpapillary nerve fiber layer (NFL) thickness profile measured by OCT in the same eye

  • The preperimetric glaucoma (PPG) eyes had HPA stage 0, as their PSD and glaucoma hemifield test (GHT) values were normal by definition

Read more

Summary

Introduction

We hypothesized that reducing the differences in scaling and weighting could improve the correlation between VF and OCT measurements. We developed a method to estimate the VF_MD using the circumpapillary NFL thickness profile measured by OCT in the same eye. The method converts NFL thickness to a dB scale and averages it using VF area weighting. We assessed whether the resulting NFL_MD has advantages over the commonly used overall NFL thickness in terms of diagnostic accuracy, staging accuracy, and correlation with VF_MD. The potential for more sensitive progression detection is evaluated by looking at between-visit retest variability

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call