Abstract

ABSTRACTThis study had the aim of investigating the utility of image-based point cloud data for estimation of vertical canopy cover (VCC). An accurate measure of VCC based on photogrammetric matching of aerial images would aid in vegetation mapping, especially in areas where aerial imagery is acquired regularly. The test area is located in southern Sweden and was divided into four vegetation types with sparse to dense tree cover: unmanaged coniferous forest; pasture areas with deciduous tree cover; wetland; and managed coniferous forest. Aerial imagery with a ground sample distance of 0.24 m was photogrammetrically matched to produce dense image-based point cloud data. Two different image matching software solutions were used and compared: MATCH-T DSM by Trimble and SURE by nFrames. The image-based point clouds were normalized using a digital terrain model derived from airborne laser scanner (ALS) data. The canopy cover metric vegetation ratio was derived from the image-based point clouds, as well as from raster-based canopy height models (CHMs) derived from the point clouds. Regression analysis was applied with vegetation ratio derived from near nadir ALS data as the dependent variable and metrics derived from image-based point cloud data as the independent variables. Among the different vegetation types, vegetation ratio derived from the image-based point cloud data generated by using MATCH-T resulted in relative root mean square errors (rRMSE) of VCC ranging from 6.1% to 29.3%. Vegetation ratio based on point clouds from SURE resulted in rRMSEs ranging from 7.3% to 37.9%. Use of the vegetation ratio based on CHMs generated from the image-based point clouds resulted in similar, yet slightly higher values of rRMSE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.